Improvements of Adaptive Filtering by Optimal Projection to filter different artifact types on long duration EEG recordings
نویسندگان
چکیده
Adaptive Filtering by Optimal Projection (AFOP) is an automatic method for reducing ocular and muscular artifacts on electro-encephalographic (EEG) recordings. This paper presents two additions to this method: an improvement of the stability of ocular artifact filtering and an adaptation of the method for filtering electrode artifacts. With these improvements, it is possible to reduce almost all the current types of artifacts, while preserving brain signals, particularly those characterising epilepsy. This generalised method consists of dividing the signal into several time-frequency windows, and in applying different spatial filters to each. Two steps are required to define one of these spatial filters: the first step consists of defining artifact spatial projection using the Common Spatial Pattern (CSP) method and the second consists of defining EEG spatial projection via regression. For this second step, a progressive orthogonalisation process is proposed to improve stability. This method has been tested on long-duration EEG recordings of epileptic patients. A neurologist quantified the ratio of removed artifacts and the ratio of preserved EEG. Among the 330 artifacted pages used for evaluation, readability was judged better for 78% of pages, equal for 20% of pages, and worse for 2%. Artifact amplitudes were reduced by 80% on average. At the same time, brain sources were preserved in amplitude from 70% to 95% depending on the type of waves (alpha, theta, delta, spikes, etc.). A blind comparison with manual Independent Component Analysis (ICA) was also realised. The results show that this method is competitive and useful for routine clinical practice.
منابع مشابه
Filtering by Optimal Projection and application to
A new approach to filter multi-channel signals is presented, called filtering by optimal projection (FOP) in this paper. This approach is based on common spatial subspace decomposition (CSSD) theory. Moreover, an evolution of this method for nonstationary signals is also introduced which is called adaptive FOP (AFOP). As ICA, a filtering matrix is set up in the best way to remove artifacts with...
متن کاملMetal Artifact Reduction of Dental Fillings in Head and Neck CT Images
Introduction: The issue of metal artifact and its reduction is as old as the clinical use of computed tomography itself. When metal objects such as dental fillings, hip prostheses or surgical clips are present in the computed tomography (CT) field of view (FOV), make severe artifacts that reduce the image quality and accuracy of CT numbers. They can lead to unreliable ...
متن کاملA Family of Selective Partial Update Affine Projection Adaptive Filtering Algorithms
In this paper we present a general formalism for the establishment of the family of selective partial update affine projection algorithms (SPU-APA). The SPU-APA, the SPU regularized APA (SPU-R-APA), the SPU partial rank algorithm (SPU-PRA), the SPU binormalized data reusing least mean squares (SPU-BNDR-LMS), and the SPU normalized LMS with orthogonal correction factors (SPU-NLMS-OCF) algorithms...
متن کاملOptimized computational Afin image algorithm using combination of update coefficients and wavelet packet conversion
Updating Optimal Coefficients and Selected Observations Affine Projection is an effective way to reduce the computational and power consumption of this algorithm in the application of adaptive filters. On the other hand, the calculation of this algorithm can be reduced by using subbands and applying the concept of filtering the Set-Membership in each subband. Considering these concepts, the fir...
متن کاملDual Adaptive Filtering by Optimal Projection Applied to Filter Muscle Artifacts on EEG and Comparative Study
Muscle artifacts constitute one of the major problems in electroencephalogram (EEG) examinations, particularly for the diagnosis of epilepsy, where pathological rhythms occur within the same frequency bands as those of artifacts. This paper proposes to use the method dual adaptive filtering by optimal projection (DAFOP) to automatically remove artifacts while preserving true cerebral signals. D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer methods and programs in biomedicine
دوره 108 1 شماره
صفحات -
تاریخ انتشار 2012